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Content

• I/O hardware 
• Application I/O interface 
• Kernel I/O subsystem 
• I/O performance



Objectives

• Explore the structure of an operating system’s I/O subsystem 
• Discuss the principles of I/O hardware and its complexity 
• Provide details of performance of I/O hardware and software



Overview

• I/O management is a major component of OS design and operation 
• important aspect of computer operation 

• I/O devices is the way computer to interact with user and other systems 
• I/O devices vary greatly 

• various methods to control them 
• performance varies 
• device drivers encapsulate device details; presents an uniform interface 

• new types of devices frequently emerges



I/O Hardware

• Incredible variety of I/O devices 
• storage, communication, human-interface 

• Common concepts: signals from I/O devices interface with computer 
• bus: an interconnection between components (including CPU) 
• port: connection point for device 
• controller: component that control the device 

• can be integrated to device or separate circuit board 
• usually contains processor, microcode, private memory, bus controller, 

etc 
• I/O access can use polling or interrupt



A Typical PC Bus Structure



I/O Hardware
• Some CPU architecture has dedicated I/O instructions 

• e.g., x86: in, out, ins, outs 
• Devices usually provide registers for data and control I/O of device 

• device driver places (pointers to) commands and data to register  
• registers include data-in/data-out, status, control ( or command) register 
• typically 1-4 bytes, or FIFO buffer 

• Devices are assigned addresses for registers or on-device memory 
• direct I/O instructions  

• to access (mostly) registers  
• memory-mapped I/O 

• data and command registers mapped to processor address space 
• to access (large) on-device memory (graphics)



I/O Ports on PCs (Partial)



Polling

• For each I/O operation: 
• busy-wait if device is busy (status register) 
• send the command to the device controller (command register) 
• read status register until it indicates command has been executed 
• read execution status, and possibly reset device status 

• Polling requires busy wait 
• reasonable if device is fast; inefficient if device slow



Interrupts

• Polling requires busy-wait, inefficient use of CPU resource 
• Interrupts can avoid busy-wait 

• device driver send a command to the controller, and return 
• OS can schedule other activities 
• device will interrupt the processor when command has been executed 
• OS retrieves the result by handling the interrupt 

• Interrupt-based I/O requires context switch at start and end 
• if interrupt frequency is extremely high, context switch wastes CPU time 
• solution: use polling instead  

• example: NAPI in Linux enables polling under very high network load



Interrupt-Driven I/O Cycle



Intel Pentium Interrupt Vector Table



Interrupts

• Interrupt is also used for exceptions 
• protection error for access violation 
• page fault for memory access error 
• software interrupt for system calls 

• Multi-CPU systems can process interrupts concurrently 
• sometimes a CPU may be dedicated to handle interrupts 
• interrupts can also have CPU affinity



Direct Memory Access

• DMA transfer data directly between I/O device and memory 
• OS only need to issue commands, data transfers bypass the CPU 
• no programmed I/O (one byte at a time), data transferred in large blocks 
• it requires DMA controller in the device or system 

• OS issues commands to the DMA controller 
• a command includes: operation, memory address for data, count of bytes… 
• usually it is the pointer of the command  written into the command register 
• when done, device interrupts CPU to signal completion



Six Steps of DMA Transfer



Application I/O Interface

• I/O system calls encapsulate device behaviors in generic classes 
• in Linux, devices can be accessed as files; low-level access with ioctl 

• Device-driver layer hides differences among I/O controllers from kernel 
• each OS has its own I/O subsystem and device driver frameworks 
• new devices talking already-implemented protocols need no extra work 

• Devices vary in many dimensions 
• character-stream or block 
• sequential or random-access 
• synchronous or asynchronous (or both) 
• sharable or dedicated 
• speed of operation 
• read-write, read only, or write only



Kernel I/O Structure



Characteristics of I/O Devices



Characteristics of I/O Devices

• Broadly, I/O devices can be grouped by the OS into 
• block I/O 

• character I/O (Stream) 
• memory-mapped file access 

• network sockets 

• Direct manipulation of I/O device usually an escape / back door 
• Linux’s ioctl call to send commands to a device driver



Block and Character Devices

• Block devices access data in blocks, such as disk drives… 
• commands include read, write, seek  
• raw I/O, direct I/O, or file-system access 
• memory-mapped file access possible (e.g., memory-mapped files) 
• DMA 

• Character devices include keyboards, mice, serial ports… 
• very diverse types of devices



Network Devices

• Varying enough from block and character to have own interface 
• very different from pipe, mailbox… 

• Popular interface for network access is the socket interface 
• it separates network protocol from detailed network operation 
• some non-network operations are implemented as sockets 

• e.g., Unix socket



Clocks and Timers

• Clocks and timers can be considered as character devices 
• very important devices as they provide current time, elapsed time, timer 

• Normal resolution about 1/60 second, some OS provides higher-resolution ones



Synchronous/Asynchronous I/O

• Synchronous I/O includes blocking and non-blocking I/O 
• blocking I/O: process suspended until I/O completed 

• easy to use and understand, but may be less efficient 
• insufficient for some needs 

• non-blocking I/O: I/O calls return as much data as available 
• process does not block, returns whatever existing data (read or write) 
• use select to find if data is ready, then use read or write to transfer data 

• Asynchronous I/O: process runs while I/O executes,  
• I/O subsystem signals process when I/O completed via signal or callback 
• difficult to use but very efficient



Two I/O Methods

synchronous! asynchronous!



Kernel I/O Subsystem

• I/O scheduling 

• to queue I/O requests via per-device queue 
• to schedule I/O for fairness and quality of service 

• Buffering - store data in memory while transferring between devices 
• to cope with device speed mismatch 
• to cope with device transfer size mismatch 
• to maintain “copy semantics” 
• to improve performance (double buffering in video)



Kernel I/O Subsystem

• Caching: hold a copy of data for fast access 
• key to performance 
• sometimes combined with buffering 

• Spooling: hold output if device can serve only one request at a time  
• i.e., printing 

• Device reservation: provides exclusive access to a device 
• system calls for allocation and de-allocation 
• watch out for deadlock



Device-status Table



Sun Enterprise 6000 Device-Transfer Rates



Error Handling

• Some OSes try to recover from errors 
• e.g., device unavailable, transient write failures 
• sometimes via retrying the read or write 
• some systems have more advanced error handling 

• track error frequencies, stop using device with high error frequency 
• Some OSes just return an error number or code when I/O request fails 

• system error logs hold problem reports



I/O Protection

• OS need to protect I/O devices 
• e.g., keystrokes can be stolen by a keylogger if keyboard is not protected 
• always assume user may attempt to obtain illegal I/O access 

• To protect I/O devices: 
• define all I/O instructions to be privileged 

• I/O must be performed via system calls 
• memory-mapped I/O and I/O ports must be protected too



Use System Call to Perform I/O



Kernel Data Structures

• Kernel keeps state info for I/O components 
• e.g., open file tables, network connections, character device state 
• many data structures to track buffers, memory allocation, “dirty” blocks 

• sometimes very complicated 
• Some OS uses message passing to implement I/O, e.g., Windows 

• message with I/O information passed from user mode into kernel 
• message modified as it flows through to device driver and back to process



UNIX I/O Kernel Structure



I/O Requests to Hardware

• System resource access needs to be mapped to hardware 
• Consider reading a file from disk for a process: 

• determine device holding file  
• translate name to device representation 
• physically read data from disk into buffer 
• make data available to requesting process 
• return control to process



Life Cycle of An I/O Request



Streams

• Stream is a full-duplex communication channel between a user-level process 
and a device in Unix systems 

• A stream consists of:  
• stream head interfaces with the user process 
• driver end interfaces with the device 
• zero or more stream modules between them (stacked) 

• each module contains a read queue and a write queue 
• Message passing is used to communicate between queues 

• asynchronous internally, synchronous for user interface



Streams Structure



Performance

• I/O is a major factor in system performance: 
• CPU to execute device driver, kernel I/O code 
• context switches due to interrupts 
• data buffering and copying 

• network traffic especially stressful



Intercomputer Communications



Performance

• To improve performance 
• reduce number of context switches 
• reduce data copying 
• reduce interrupts by using large transfers, smart controllers, polling 
• use DMA 
• use smarter hardware devices 
• move user processes to kernel threads



Device-Functionality Progression
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