COP 4610: Introduction to Operating Systems (Spring 2015)

Chapter 13:
I/0 Systems

Zhi Wang
Florida State University

Content

/0O hardware
- Application |/O interface
Kernel I/O subsystem

/O performance

Objectives

Explore the structure of an operating system’s |/O sulbsystem
Discuss the principles of I/O hardware and its complexity

Provide details of performance of |/O hardware and software

Overview

/0O management is a major component of OS design and operation
important aspect of computer operation
/O devices is the way computer to interact with user and other systems
/O devices vary greatly
- various methods to control them
performance varies
- device drivers encapsulate device details; presents an uniform interface

new types of devices frequently emerges

/O Hardware

Incredible variety of 1/0O devices
- storage, communication, human-interface
- Common concepts: signals from 1/O devices interface with computer
bus: an interconnection between components (including CPU)
port: connection point for device
- controller: component that control the device
- can be integrated to device or separate circuit board

usually contains processor, microcode, private memory, bus controller,
etc

/O access can use polling or interrupt

A Typical

PC Bus Structure

2000

monitor processor
cache
gc:ﬁfrgif:r bric(i:%i/trrr(\)?lrenrory memory SCSI controller
| PCI bus
IDE disk controller expansion bus keyboard
interface
@ @ { expansion bus
@ @ parallel serial
port port

/O Hardware

- Some CPU architecture has dedicated I/O instructions
* e.g., x86: in, out, ins, outs
- Devices usually provide registers for data and control I/O of device
- device driver places (pointers to) commands and data to register
- registers include data-in/data-out, status, control (or command) register
- typically 1-4 bytes, or FIFO buffer
- Devices are assigned addresses for registers or on-device memory
- direct 1/0 instructions
- to access (mostly) registers
- memory-mapped 1/0
- data and command registers mapped to processor address space

- to access (large) on-device memory (graphics)

/0

Ports on PCs (Partial)

|/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

Polling

For each |/O operation:
- busy-wait if device is busy (status register)
- send the command to the device controller (command register)
- read status register until it indicates command has lbeen executed
- read execution status, and possibly reset device status
Polling requires busy walit

- reasonable if device is fast; inefficient if device slow

Interrupts

Polling requires busy-wait, inefficient use of CPU resource

nterrupts can avoid busy-wait

» device driver send a command to the controller, and return

- OS can schedule other activities

- device will interrupt the processor when command has been executed

+ OS retrieves the result by handling the interrupt

Interrupt-based |/O requires context switch at start and end

- If interrupt frequency is extremely high, context switch wastes CPU time
» solution: use polling instead

- example: NAPI in Linux enables polling under very high network load

Interrupt-Driven 1/O Cycle

CPU I/O controller

» device driver initiates I/O X
initiates 1/0

CPU executing checks for
interrupts between instructions

I 3
I
I
¥
CPU receiving interrupt, 4 input ready, output
transfers control to n complete, or error
interrupt handler generates interrupt signal

7
E
interrupt handler

processes data,
returns from interrupt

| s

CPU resumes
processing of
interrupted task

INtel

Pentium Interrupt Vector Table

vector number

description

© O NO Ok WON = O

B S e L P L Y
(00) | (op) (] 4 ((0) [y) = (=)

19-31
32—-255

divide error

debug exception

null interrupt

breakpoint

INTO-detected overflow
bound range exception
invalid opcode

device not available
double fault

coprocessor segment overrun (reserved)
invalid task state segment
segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)
floating-point error
alignment check

machine check

(Intel reserved, do not use)
maskable interrupts

Interrupts

Interrupt is also used for exceptions
protection error for access violation
page fault for memory access error
- software interrupt for system calls
Multi-CPU systems can process interrupts concurrently
- sometimes a CPU may be dedicated to handle interrupts

interrupts can also have CPU affinity

Direct Memory Access

DMA transfer data directly between |/O device and memory
- OS only need to issue commands, data transfers bypass the CPU
- no programmed I/O (one byte at a time), data transferred in large blocks
- It requires DMA controller in the device or system
-+ OS issues commands to the DMA controller
- a command includes: operation, memory address for data, count of bytes...
- usually it is the pointer of the command written into the command register

- when done, device interrupts CPU to signal completion

Six Steps of DMA Transfer

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0 DMA/bUS/
u
6. when C = 0, DMA : = X
interrupts CPU to signal égtri;gu"gr)— Sk nemony. s iy butter
transfer completion
§ PCI bus |
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
el @b

Application I/O Interface

/O system calls encapsulate device behaviors in generic classes
In Linux, devices can be accessed as files; low-level access with ioctl
Device-driver layer hides differences among |/O controllers from kernel
- each OS has its own |/O subsystem and device driver frameworks
new devices talking already-implemented protocols need no extra work
Devices vary in many dimensions
- character-stream or block
- sequential or random-access
+ synchronous or asynchronous (or both)
- sharable or dedicated
- speed of operation

read-write, read only, or write only

Kernel |/O Structure

software

hardware

kernel

kernel 1/0O subsystem

SCSI keyboard | mouse PCI bus floppy ATAPI
device device device oo device device device
driver driver driver driver driver driver
SCSI keyboard | mouse PCI bus floppy ATAPI
device device device cee device device device
controller | controller | controller controller | controller | controller
ATAPI
SCS| floppy- | | devices
P keyboard| | mouse oo PCI bus d_|sk (disks,
drives tapes,

drives)

Characteristics of I/0O Devices

aspect variation example
Gt ree o character terminal
block disk
sequential modem
access method e CD-ROM
transfer schedule e EleLs £
asynchronous keyboard
Sharn dedicated tape
g sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
read only CD-ROM
/O direction write only graphics controller
read-write disk

Characteristics of I/0O Devices

- Broadly, 1/0O devices can be grouped by the OS into
- block 1/0
- character I/0 (Stream)
- memory-mapped file access
- network sockets
- Direct manipulation of I/O device usually an escape / back door

- Linux’s 1octl call to send commands to a device driver

Block and Character Devices

- Block devices access data in blocks, such as disk drives...
- commands include read, write, seek
- raw /O, direct /O, or file-system access

- memory-mapped file access possible (e.g., memory-mapped files)
- DMA

- Character devices include keyboards, mice, serial ports...

- very diverse types of devices

Network Devices

- Varying enough from block and character to have own interface
- very different from pipe, mailbox...
Popular interface for network access is the socket interface
it separates network protocol from detailed network operation
- some non-network operations are implemented as sockets

- e.g., Unix socket

Clocks and Timers

- Clocks and timers can be considered as character devices
- very important devices as they provide current time, elapsed time, timer

Normal resolution about 1/60 second, some OS provides higher-resolution ones

Synchronous/Asynchronous 1/0

- Synchronous I/0 includes blocking and non-blocking 1/0
- blocking 1/0: process suspended until I/O completed
- easy to use and understand, but may be less efficient
- Insufficient for some needs
- non-blocking I/0: /O calls return as much data as available
- process does not block, returns whatever existing data (read or write)
- use select to find if data is ready, then use read or write to transfer data
- Asynchronous I/0: process runs while /O executes,
- |/O subsystem signals process when |/O completed via signal or callback

- difficult to use but very efficient

Two I/O Methods

kernel user <

N

requesting process
— waiting—— 4

device driver

Arequesting process

!
|
\

interrupt handler

device driver

hardware

— data transfer —

!
|
\

\

tinterrupt handler
!

time —»

(a)

synchronous

hardware

—L -~ data transfer —

time —»

(b)

asynchronous

AN

> usSer

. kernel

Kernel /0 Subsystem

I/0 scheduling
- to queue I/O requests via per-device queue
- to schedule |/O for fairness and quality of service
Buffering - store data in memory while transferring between devices
- to cope with device speed mismatch
- 1o cope with device transfer size mismatch
- to maintain “copy semantics”

- to improve performance (double buffering in video)

Kernel /0 Subsystem

- Caching: hold a copy of data for fast access
- key to performance
- sometimes combined with buffering
- Spooling: hold output if device can serve only one request at a time
- l.e., printing
- Device reservation: provides exclusive access to a device
- system calls for allocation and de-allocation

- watch out for deadlock

Device-status Table

device: keyboard

status: idle

device: laser printer request for L

address: 38546

device: mouse length: 1372

status: idle

device: disk unit 1

status: idle

gg‘;fs:gfsk unit 2 —— request for ——— request for __—l—

AodEy disk unit 2 disk unit 2

file: xxx file: yyy
operation: read operation; write
address: 43046 address: 03458
length: 20000 length: 500

Sun Enterprise 6000 Device- Transfer Rates

System
HyperTransport (32-
PCIl Express 2.0 (
Infiniband (QDR
Serial ATA (SATA-

gigabit eth

SCS
FireWire

hard disk

0.00001 0.001 0.1 10 1000 100000 1E-

—rror Handling

Some OSes try to recover from errors
e.g., device unavailable, transient write failures
sometimes via retrying the read or write
some systems have more advanced error handling
track error frequencies, stop using device with high error frequency
Some OSes just return an error number or code when |/O request fails

system error logs hold problem reports

/O Protection

- OS need to protect I/0O devices
- e.g., keystrokes can be stolen by a keylogger if keyboard is not protected
- always assume user may attempt to obtain illegal /O access
- To protect I/0O devices:
- define all I/O instructions to be privileged
- |/O must be performed via system calls

- memory-mapped /O and I/O ports must be protected too

Use System Call to Perform |/O

et kernel

trap to perform /O
monitor

> read -

©,

return
to user

user
program

system call ne—

Kernel Data Structures

Kernel keeps state info for I/O components
- e.g., open file tables, network connections, character device state
- many data structures to track buffers, memory allocation, “dirty” blocks
- sometimes very complicated
- Some OS uses message passing to implement 1/0O, e.g., Windows
- message with I/0 information passed from user mode into kernel

- message modified as it flows through to device driver and back to process

UNIX I/O Kernel Structure

system-wide open-file table

file descriptor

—»

per-process
open-file table

4

user-process memory

¢

file-system record

inode pointer

pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

active-inode
table

4

networking (socket) record

pointer to network info

pointer to read and write functions
pointer to select function

pointer to ioctl function

pointer to close function

network-
information
table

kernel memory

/0O Requests to Hardware

-+ System resource access needs to be mapped to hardware
- Consider reading a file from disk for a process:

- determine device holding file

- translate name to device representation

- physically read data from disk into buffer

- make data avallable to requesting process

+return control to process

Life Cycle of An I/O Request

user I/O completed,
request 1/O process input data available, or
output completed

| !
systermical return from system call

transfer data

can already (if appropriate) to process,
satisfy request? yes return completion

or error code

A

kernel
I/O subsystem

Y

no

send request to device
driver, block process if kernel
appropriate I/O subsystem

Y

process request, issue
commands to controller, device
configure controller to driver
block until interrupted

determine which I/O
completed, indicate state
change to I/O subsystem

A
FratiiBt receive interrupt, store
device-controller commands handlepr data in device-driver buffer
if input, signal to unblock
device driver
interrupt
Y |
device
monitor device, controller
nierrpt \;vr:ecr; A% ¥ g(le/r?e::e:’:(ren ﬁl?é?r?;pt
complete

time >

Streams

Stream is a full-duplex communication channel between a user-level process
and a device in Unix systems

A stream consists of:
stream head interfaces with the user process
driver end interfaces with the device
Zero or more stream modules between them (stacked)
each module contains a read queue and a write queue
Message passing is used to communicate between queues

asynchronous internally, synchronous for user interface

Streams Structure

gser proces?

stream head

modules

read queue write queue
T !

read queue write queue
T l

read queue write queue
T l

read queue write queue

driver end

device

Performance

/O is a major factor in system performance:

+ CPU to execute device driver, kernel 1/0O code
- context switches due to interrupts

- data buffering and copying

- network traffic especially stressful

character

typed system call
completes
ot
g|s
==
S| &
interrupt interrupt
generated handled
’ 3
2|2 21Q
HE AE
) 4
interrupt interrupt
handled generated
h 4
device network
driver adapter
F 3
h 4
kernel device
driver
gl
==
=
8‘!‘”
context
Unel » kernel
PIocess | switch

sending system

Intercomputer Communications

network
packet
received

network
adapter

interrupt
generated

kernel

context
witch

S

network
daemon

context

=

network
subdaemon

context
switch

:

switch

kernel

receiving system

Performance

To improve performance
reduce number of context switches
reduce data copying
reduce interrupts by using large transfers, smart controllers, polling
use DMA
use smarter hardware devices

move user processes to kernel threads

Device-Functionality Progression

new algorithm

. 4

application code

)

kernel code

device-driver code

increased flexibility

device-controller code (hardware)

increased abstraction

increased development cost

increased time (generations)
increased efficiency

device code (hardware)

—nd of Chapter 13

