
COP 4610: Introduction to Operating Systems (Spring 2015)

Chapter 13:
I/O Systems

Zhi Wang

Florida State University

Content

• I/O hardware
• Application I/O interface
• Kernel I/O subsystem
• I/O performance

Objectives

• Explore the structure of an operating system’s I/O subsystem
• Discuss the principles of I/O hardware and its complexity
• Provide details of performance of I/O hardware and software

Overview

• I/O management is a major component of OS design and operation
• important aspect of computer operation

• I/O devices is the way computer to interact with user and other systems
• I/O devices vary greatly

• various methods to control them
• performance varies
• device drivers encapsulate device details; presents an uniform interface

• new types of devices frequently emerges

I/O Hardware

• Incredible variety of I/O devices
• storage, communication, human-interface

• Common concepts: signals from I/O devices interface with computer
• bus: an interconnection between components (including CPU)
• port: connection point for device
• controller: component that control the device

• can be integrated to device or separate circuit board
• usually contains processor, microcode, private memory, bus controller,

etc
• I/O access can use polling or interrupt

A Typical PC Bus Structure

I/O Hardware
• Some CPU architecture has dedicated I/O instructions

• e.g., x86: in, out, ins, outs
• Devices usually provide registers for data and control I/O of device

• device driver places (pointers to) commands and data to register
• registers include data-in/data-out, status, control (or command) register
• typically 1-4 bytes, or FIFO buffer

• Devices are assigned addresses for registers or on-device memory
• direct I/O instructions

• to access (mostly) registers
• memory-mapped I/O

• data and command registers mapped to processor address space
• to access (large) on-device memory (graphics)

I/O Ports on PCs (Partial)

Polling

• For each I/O operation:
• busy-wait if device is busy (status register)
• send the command to the device controller (command register)
• read status register until it indicates command has been executed
• read execution status, and possibly reset device status

• Polling requires busy wait
• reasonable if device is fast; inefficient if device slow

Interrupts

• Polling requires busy-wait, inefficient use of CPU resource
• Interrupts can avoid busy-wait

• device driver send a command to the controller, and return
• OS can schedule other activities
• device will interrupt the processor when command has been executed
• OS retrieves the result by handling the interrupt

• Interrupt-based I/O requires context switch at start and end
• if interrupt frequency is extremely high, context switch wastes CPU time
• solution: use polling instead

• example: NAPI in Linux enables polling under very high network load

Interrupt-Driven I/O Cycle

Intel Pentium Interrupt Vector Table

Interrupts

• Interrupt is also used for exceptions
• protection error for access violation
• page fault for memory access error
• software interrupt for system calls

• Multi-CPU systems can process interrupts concurrently
• sometimes a CPU may be dedicated to handle interrupts
• interrupts can also have CPU affinity

Direct Memory Access

• DMA transfer data directly between I/O device and memory
• OS only need to issue commands, data transfers bypass the CPU
• no programmed I/O (one byte at a time), data transferred in large blocks
• it requires DMA controller in the device or system

• OS issues commands to the DMA controller
• a command includes: operation, memory address for data, count of bytes…
• usually it is the pointer of the command written into the command register
• when done, device interrupts CPU to signal completion

Six Steps of DMA Transfer

Application I/O Interface

• I/O system calls encapsulate device behaviors in generic classes
• in Linux, devices can be accessed as files; low-level access with ioctl

• Device-driver layer hides differences among I/O controllers from kernel
• each OS has its own I/O subsystem and device driver frameworks
• new devices talking already-implemented protocols need no extra work

• Devices vary in many dimensions
• character-stream or block
• sequential or random-access
• synchronous or asynchronous (or both)
• sharable or dedicated
• speed of operation
• read-write, read only, or write only

Kernel I/O Structure

Characteristics of I/O Devices

Characteristics of I/O Devices

• Broadly, I/O devices can be grouped by the OS into
• block I/O

• character I/O (Stream)
• memory-mapped file access

• network sockets

• Direct manipulation of I/O device usually an escape / back door
• Linux’s ioctl call to send commands to a device driver

Block and Character Devices

• Block devices access data in blocks, such as disk drives…
• commands include read, write, seek
• raw I/O, direct I/O, or file-system access
• memory-mapped file access possible (e.g., memory-mapped files)
• DMA

• Character devices include keyboards, mice, serial ports…
• very diverse types of devices

Network Devices

• Varying enough from block and character to have own interface
• very different from pipe, mailbox…

• Popular interface for network access is the socket interface
• it separates network protocol from detailed network operation
• some non-network operations are implemented as sockets

• e.g., Unix socket

Clocks and Timers

• Clocks and timers can be considered as character devices
• very important devices as they provide current time, elapsed time, timer

• Normal resolution about 1/60 second, some OS provides higher-resolution ones

Synchronous/Asynchronous I/O

• Synchronous I/O includes blocking and non-blocking I/O
• blocking I/O: process suspended until I/O completed

• easy to use and understand, but may be less efficient
• insufficient for some needs

• non-blocking I/O: I/O calls return as much data as available
• process does not block, returns whatever existing data (read or write)
• use select to find if data is ready, then use read or write to transfer data

• Asynchronous I/O: process runs while I/O executes,
• I/O subsystem signals process when I/O completed via signal or callback
• difficult to use but very efficient

Two I/O Methods

synchronous! asynchronous!

Kernel I/O Subsystem

• I/O scheduling

• to queue I/O requests via per-device queue
• to schedule I/O for fairness and quality of service

• Buffering - store data in memory while transferring between devices
• to cope with device speed mismatch
• to cope with device transfer size mismatch
• to maintain “copy semantics”
• to improve performance (double buffering in video)

Kernel I/O Subsystem

• Caching: hold a copy of data for fast access
• key to performance
• sometimes combined with buffering

• Spooling: hold output if device can serve only one request at a time
• i.e., printing

• Device reservation: provides exclusive access to a device
• system calls for allocation and de-allocation
• watch out for deadlock

Device-status Table

Sun Enterprise 6000 Device-Transfer Rates

Error Handling

• Some OSes try to recover from errors
• e.g., device unavailable, transient write failures
• sometimes via retrying the read or write
• some systems have more advanced error handling

• track error frequencies, stop using device with high error frequency
• Some OSes just return an error number or code when I/O request fails

• system error logs hold problem reports

I/O Protection

• OS need to protect I/O devices
• e.g., keystrokes can be stolen by a keylogger if keyboard is not protected
• always assume user may attempt to obtain illegal I/O access

• To protect I/O devices:
• define all I/O instructions to be privileged

• I/O must be performed via system calls
• memory-mapped I/O and I/O ports must be protected too

Use System Call to Perform I/O

Kernel Data Structures

• Kernel keeps state info for I/O components
• e.g., open file tables, network connections, character device state
• many data structures to track buffers, memory allocation, “dirty” blocks

• sometimes very complicated
• Some OS uses message passing to implement I/O, e.g., Windows

• message with I/O information passed from user mode into kernel
• message modified as it flows through to device driver and back to process

UNIX I/O Kernel Structure

I/O Requests to Hardware

• System resource access needs to be mapped to hardware
• Consider reading a file from disk for a process:

• determine device holding file
• translate name to device representation
• physically read data from disk into buffer
• make data available to requesting process
• return control to process

Life Cycle of An I/O Request

Streams

• Stream is a full-duplex communication channel between a user-level process
and a device in Unix systems

• A stream consists of:
• stream head interfaces with the user process
• driver end interfaces with the device
• zero or more stream modules between them (stacked)

• each module contains a read queue and a write queue
• Message passing is used to communicate between queues

• asynchronous internally, synchronous for user interface

Streams Structure

Performance

• I/O is a major factor in system performance:
• CPU to execute device driver, kernel I/O code
• context switches due to interrupts
• data buffering and copying

• network traffic especially stressful

Intercomputer Communications

Performance

• To improve performance
• reduce number of context switches
• reduce data copying
• reduce interrupts by using large transfers, smart controllers, polling
• use DMA
• use smarter hardware devices
• move user processes to kernel threads

Device-Functionality Progression

End of Chapter 13

